Matthew S. Rahn

hire@rothrock.dev

EDUCATION

M.S. in Materials Science and Engineering

Northwestern University

B.S. in Materials Science and Engineering *The Pennsylvania State University, Schreyer Honors College (summa cum laude)*

WORK EXPERIENCE

Intel Corporation

Module Development Engineer

- Led installation and process qualification of two first of a kind plasma enhanced chemical vapor deposition tools: Tokyo Electron Triase⁺ and Tokyo Electron Episode 1 platforms
- Collaborated with focus teams to develop process recipes resulting in increased device performance (+1%) and improved tool efficiency (-1 process chamber)
- ◊ Designed and set up module support systems, including process flow control, test wafers, and metrology events
- Implemented automatic utilities for lot disposition, inline monitoring, shift passdown, and wafermap defect mode identification (>120 hr/wk saved)

RESEARCH EXPERIENCE

Northwestern University

Researcher, Hersam Group

- Characterized two-dimensional materials (borophene, epitaxial graphene, self-assembled molecules) using ultrahigh vacuum scanning tunneling microscopy (+4 publications)
- Expanded the capabilities of five custom-built ultra-high vacuum systems, adding capacity for characterization (scanning tunneling microscopy, qPlus atomic force microscopy) and in-situ growth (electron beam deposition, sputtering, gas functionalization)
- Acted as equipment superuser for Asylum Instruments Cypher atomic force microscope; developed new instrumental techniques for users including lateral force microscopy, nanopatterning, and use of an inert gas cell to characterize ambient-reactive materials
- Automated and implemented alerts for laboratory processes such as thermal annealing, e-beam operation, and cryostat temperature/level monitoring (>200 hr/yr saved)
- Served as a teaching assistant for two graduate level solid state physics courses: MSE 451 Physics of Materials (fall 2018) and MSE 405 Physics of Solids (spring 2020, 2021)

The Pennsylvania State University

Research Assistant, Engel-Herbert Group

The University of New South Wales *Research Assistant, IRES program*

North Carolina State University Research Assistant, Ivanisevic Group

TECHNICAL SKILLS

Computing: Python, SQL, MATLAB, Git, JMP, SolidWorks (CAD/CAM), Blender, LATEX

- **Fabrication:** Milling, turning, grinding, additive manufacturing (FDM, MSLA), welding (TIG, stick), electrical discharge machining, design and construction of ultra-high vacuum compatible components and assemblies
- **Metrology:** Scanning tunneling microscopy/spectroscopy, atomic force microscopy (contact/non-contact, CAFM, LFM), scanning electron microscopy, Raman spectroscopy, X-ray photoelectron spectroscopy, thermogravimetric analysis, residual gas analysis, energy-dispersive X-ray spectroscopy, secondary ion mass spectroscopy

Graduated: 2022 *Evanston, IL*

Graduated: 2016 State College, PA

> 2022 – present Hillsboro, OR

> > **2016 – 2022** Evanston, IL

2014 – 2016 State College, PA

Q3 2015 Sydney, Australia

> **Q3 2014** *Raleigh, NC*

Logic Technology Development (LTD) Divisional Recognition Award \diamond For independent development of an automatic passdown system for the XCT, TIF, WDP, and LAK me	Q2 2024 odules
LTD Department Recognition Award \diamond For group recipe development leading to Intel 18A performance and yield improvements	Q1 2024
LTD Area Recognition Award \diamond For independent development of a wafermap defect mode library for the XCT and WDP modules	Q1 2024
LTD Area Recognition Award \diamond For independent development of an automatic check out lot disposition system for the XCT module	Q1 2023
National Science Foundation Graduate Research Fellowship, Honorable Mention Hierarchical Materials Cluster Program Fellowship	2018 2017
Matthew J. Wilson Honors Scholarship	2015 - 2016
Greskovich Scholarship	2015 - 2016
Mcfarlane Scholarship	2015 - 2016
First Place Winner, Materials Design Competition	2015
Helen and Van Leichliter Scholarship	2014 - 2015
John and Elizabeth Holmes Teas Scholarship	2013 - 2015
Anthony J. and Alberta L. Perotta Scholarship	2012 - 2013
President's Freshman Award	2013

PUBLICATIONS

- E. B. Aklile, X. Liu, D. P. Goronzy, **M. S. Rahn**, Q. Li, C. Lamarca, and M. C. Hersam. Achieving ambient stability of borophene via ultrahigh vacuum alumina. *ACS Nano Letters*, (submitted)
- X. Liu, **M. S. Rahn**, Q. Ruan, B. I. Yakobson, and M. C. Hersam. Probing borophene oxidation at the atomic scale. *Nanotechnology*, 33, 2022
- X. Liu, Q. Li, Q. Ruan, M. S. Rahn, B. I. Yakobson, and M. C. Hersam. Borophene synthesis beyond the single-atomiclayer limit. *Nature Materials*, 21:35–40, 2022
- Q. Li, V. S. C. Kolluru, **M. S. Rahn**, E. Schwenker, S. Li, R. G. Hennig, P. Darancet, M. K. Y. Chan, and M. C. Hersam. Synthesis of borophane polymorphs through hydrogenation of borophene. *Science*, 371:1143, 2021
- A. M. Evans, A. Giri, V. K. Sangwan, S. Xun, M. Bartnof, C. G. Torres-Castanedo, H. B. Balch, M. S. Rahn, N. P. Bradshaw, E. Vitaku, D. W. Burke, H. Li, M. J. Bedzyk, F. Wang, J.-L. Brédas, J. A. Malen, A. J. H. McGaughey, M. C. Hersam, W. R. Dichtel, and P. E. Hopkins. Thermally conductive ultra-low-k dielectric layers based on two-dimensional covalent organic frameworks. *Nature Materials*, 20:1142–1148, 2021
- S. Li, C. Zhong, A. Henning, V. K. Sangwan, Q. Zhou, X. Liu, M. S. Rahn, S. A. Wells, H. Y. Park, J. Luxa, Z. Sofer, A. Facchetti, P. Darancet, T. J. Marks, L. J. Lauhon, E. A. Weiss, and M. C. Hersam. Molecular-scale characterization of photoinduced charge separation in mixed-dimensional inse–organic van der waals heterostructures. ACS Nano, 14:3509–3518, 2020
- X. Liu, L. Wang, S. Li, **M. S. Rahn**, B. I. Yakobson, and M. C. Hersam. Geometric imaging of borophene polymorphs with functionalized probes. *Nature Communications*, 10:1642, 2019
- B. L. Pearce, N. G. Berg, **M. S. Rahn**, and A. Ivanisevic. In situ and ex situ functionalization of nanostructured gallium oxy-hydroxide with a porphyrin dye. *Scanning*, 38:671–683, 2016
- B. L. Pearce, S. J. Wilkins, **M. S. Rahn**, and A. Ivanisevic. In situ functionalization of gallium nitride powder with a porphyrin dye. *Journal of Materials Research*, 30:2910–2918, 2015
- A. Golas, H. Pitakjakpipop, M. S. Rahn, C. A. Siedlecki, and E. A. Vogler. Enzymes produced by autoactivation of blood factor xii in buffer: A contribution from the hematology at biomaterial interfaces research group. *Biomaterials*, 37:1– 12, 2015